DOCSTUDIO as Distributed Document Ledger

Using Blockchain ledger technology for providing documents immutability and notarization

Challenge: Document Existence and Integrity Verification

- Companies often face the challenge of securely establishing document existence.
- Traditional methods involving notaries or witnesses can be time-consuming.

However, now there is a better solution: Blockchain and Document Ledger Technology (DLT).

Key Benefits:

- Irrefutable proof of document existence at specific moments in the past.
- Assurance that the document's content remains unchanged since creation.

Understanding Blockchain

- → Blockchain (with capital B): A distributed database established on a global network of over 100,000 enthusiast hosts.
- → Used for recording data about transactions involving Bitcoin and various cryptocurrencies.

Key Features

- → New blocks of data (known as "The Block") are posted every 10 minutes.
- → Each block can contain approximately 2000 records of BTC or other cryptocurrency transactions.
- → The first block, known as the "Genesis Block," was posted on January 3, 2009.
- \rightarrow Currently, there are approximately 792,900 blocks (as of June 21).

Short Text Messages on the Blockchain

- \rightarrow "OP_RETURN" allows the posting of very short text messages.
- → Messages can have a maximum length of 80 bytes.

How can we use this?

Utilizing Blockchain: Document Fingerprinting with Hash Values

Limitations of OP_RETURN message size make it unsuitable for posting substantial documents.

The ideal alternative is to post a document's fingerprint, known as a hash value. Hash value is a compact and fixed-size representation of a large amount of data.

Hash Value

Any changes to the original data will result in a different hash value. Hash values can serve as a digital equivalent of notarization.

Analogous to Notarization

Publishing the hash value does not make the original document content public.

Confidentiality and Flexibility

Documents can be digitally notarized while keeping their content confidential.

The original document can remain unpublished until the need arises.

In summary, by utilizing hash values on the Blockchain, we can establish document authenticity and integrity without revealing the document's contents, providing a secure and flexible digital notarization solution.

Maintaining Immutability on the Blockchain

2

Interconnected Chain:

All interchanges within a block and across blocks are intricately linked together

Insurmountable Challenges:

Attempting to manipulate the Blockchain requires re-mining all hashes from the point of alteration to the past.

This demands an immense amount of computational power and time, rendering it infeasible and easily detectable.

4

Uncompromising Integrity:

The Blockchain's structure and consensus mechanisms make it highly resistant to tampering or unauthorized modifications.

Immutability is achieved through the distributed nature of the network and the computational cost of altering the Blockchain.

3

Immutable Nature:

Removing interchanges only affects the local node, creating a "broken chain."

Other 100,000 nodes globally preserve the original interchanges, ensuring chain integrity. We like to call hash as fingerptrint.

Like all people have their unique fingerprint

"Hash" is a cryptographic function that converts a string of characters of any length (100 bytes, 1MB, 1GB, 1TB) into a unique output, or hash, of a fixed length

The essentials are as follows:

Few words about "Hash"

- Hashing is a one-way method for cryptographically encoding data (the term "one-way" means that the original input cannot be reconstructed from the hash).
- It produces a fixed-length output for any input.
- The same input will always produce the same hash.
- The most popular algorithm used today is SHA-256.

Hash samples made by SHA256 function

Input	Output	
hello	2CF24DBA5FB0A30E26E83B2AC5B9E29E1B161E5C1FA7425E73043362938B9824	
Hello	185f8db32271fe25f561a6fc938b2e264306ec304eda518007d1764826381969	
Hello!	334d016f755cd6dc58c53a86e183882f8ec14f52fb05345887c8a5edd42c87b7	
It's a good day to HODL.	6B89D5D4AD6A3364410DD9BAB95FD250EF4A663D9D3C47CBD7388535A5912E03	
The entire novel Bleak House by Charles Dickens	4F144CC612CA27E2DD6DFD6663F68BABC3B758D602B5102BF14E717E823EB741	

You have to save hash for this document (and document itself) somewhere. Whenever later you may use the same hash function and if document wasn't changes, hash value will be the same.

Md2	a9046c73e00331af68917d3804f70655	
Md4	866437cb7a794bce2b727acc0362ee27	
Md5	5d41402abc4b2a76b9719d911017c592	
Sha1	aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d	
Sha224	ea09ae9cc6768c50fcee903ed054556e5bfc8347907f12598aa24193	
Sha256	2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824	
Sha384	59e1748777448c69de6b800d7a33bbfb9ff1b463e44354c3553bcdb9c666fa90125a3c79f90397bdf5f6a13 de828684f	
Sha512	9b71d224bd62f3785d96d46ad3ea3d73319bfbc2890caadae2dff72519673ca72323c3d99ba5c11d7c7acc 6e14b8c5da0c4663475c2e5c3adef46f73bcdec043	
Crc32	3d653119	
Crc32b	86a61036	

Basic concept. Small exercise

Link to the file	MD5 Hash	MD5(CurHash+Prev Hash)
https://s3.my.com/D1.pdf	6582b48e3f323b43 1ca8255ed610c262	6582b48e3f323b431 ca8255ed610c262
https://s3.my.com/D2.pdf	83c9ca1abfd764eaf 831c3c2bea15719	37468fcd8d1fa9985d 99f709c750c800
https://s3.my.com/D3.pdf	f891a09eed789d9e adc62909cc5458f4	cee21a9e1151c5556 4b71fd3e5b676b1

Why does it matter?

Hash functions make it virtually impossible to generate the same output from two different inputs.

Verifying Document Integrity:

- Share the hash with a trusted person without revealing the actual document.
- After a specified period, such as 10 years, ask them to verify if the document remains unaltered.
- The trusted person recalculates the SHA-256 hash for the document and compares it with the original hash provided.
- This serves as proof of immutability but not as proof of existence. If the hashes are equal, it confirms that the document hasn't been altered by anyone, including yourself.

Proof of Immutability vs. Proof of Existence:

The hash verification serves as proof of immutability, confirming that the document hasn't been altered.

However, it does not provide proof of the document's existence, only its integrity.

Blockchain Mechanics

Network and Fees:

- Blockchain operates through a network of enthusiasts.
- Posting an OP_RETURN message requires a fee of approximately 0.0002 BTC (\$5), leading to potential charges for companies with high document volumes.

Interchange Process:

- OP_RETURN interchanges enter the MEMPOOL for inclusion in the next block, posted every 10 minutes.
- A reward must be provided to miners for processing the interchange, typically within 10 minutes.

Prooflink for Data:

- Once posted, a permanent prooflink is generated, providing a verifiable record.
- Example prooflink: <u>https://www.blockchain.com/explorer/transactions/btc/b48e6f03f0dba6e9ad0d8a14b4c5</u> <u>9269e69f6220764f7a4476d9df26220de95b</u>

Blockchain and Alternatives

This is where the Blockchain network comes, serving as a distributed database or distributed ledger, but it has certain limitations:

- 1) Each record can only hold a maximum of 40 bytes.
- 2) Posting each record comes with a significant cost, ranging from \$10 to \$50.
- 3) The maximum speed of the global Blockchain network is limited to 10 interchanges per second.
- 4) There is a waiting period of approximately 10 minutes before a message (transaction) gets published and confirmed on the Blockchain.

Problems arise due to these limitations:

- Storing all data on the Blockchain is not feasible; only hashes, evidence, or fingerprints can be posted.
- 2) Even posting only hashes incurs expenses and is a slow process.

Solution: Trust through a Secondary-Level Ledger

The Blockchain network is a powerful solution, serving as a distributed database or ledger.

Approach: Submit global Blockchain hash-records daily or at specified intervals.

Theoretically, data manipulation is only possible until the hash, which depends on the documents, is posted to the public Blockchain.

The Second Layer Ledger: Cost Optimization

Concept: Create an internal chain of blocks with hash values for a large document collection

Key idea: Selectively post every N-th document to the blockchain within the chain

Challenge: Trusting the blockchain if we can modify it by adding new documents and recalculating hashes

Solution: Publish the super-hash in a public location beyond our control to prevent deletion or alteration

How can we achieve this in DocStudio?

You have the option to create a template for any desired document, and within the processing flow, you can include a user named "Blockchain Bot."

How can we achieve this in DocStudio?

When the processing flow for an envelope, created from such a document, reaches the Blockchain Bot, the hash of the document (in XML/JSON or PDF format, or both) will be directly posted to the Blockchain or transmitted through a so-called Second Layer Ledger.

How can we achieve this in DocStudio?

Within approximately 10 minutes, a new document called "The DocStudio Blockchain Certificate" will be generated in the same envelope. This certificate will contain a permanent Blockchain link along with a few other relevant data points.

Variety of Blockchain Platforms

The world of blockchain encompasses a diverse range of platforms, each utilizing different software but sharing similar approaches. These platforms are accessible to the public, but it's crucial to recognize that they all have their respective limitations.

Thank You!

Zack Dikhtyar, CEO dz@docstudio.com

Alisa Konchenko, VP of Business Development <u>ae@docstudio.com</u>

Eugene Soloviov, CTO js@docstudio.com

DocStudio's source code registered under the codename WhiteDoc in US Copyright Office (case number 1-9052495699 07/23/2020)